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Abstract. In this article, we review main features of the Algebra Decentralized

Exchange (DEX) and compare it with other DEXs and their approach to

decentralized trading. The key differences between Algebra and other exchanges

are dynamic fees, built-in farming, and deflationary tokens support. We are taking a

closer look at these features and exploring exchange users' benefits.

​
​1. Dynamic Fees

​Introduction

Decentralized exchanges (DEX) are a fundamental constituent of the rapidly-developing field of

decentralized finance. The functioning of the financial system is impossible without a stable and

reliable ability to exchange assets. This is why a number of developers and researchers are

focused on the development of exchanges that would enable this financial system. In addition to

breakthrough technologies like Uniswap, there is work being done on a wide range of alternative

approaches and solutions.

The leading direction in the field of DEXs (decentralized exchanges) is the use of automated

market makers – AMM, which provide users with the opportunity to conduct instant exchanges



without the participation of third parties as facilitators. The standard approach to implementing

AMMs at the moment is to constantly follow some invariant, particularly the constant market

function. For Uniswap V2 and other similar AMMs, it can be expressed as follows:

𝑋 · 𝑌 = 𝑘 (1)

where X and Y, respectively, are the reserves of the first and second asset in the pool, and k is a

constant determined when creating a pair. This formula provides a simple calculation of the swap

results, the stability of the exchange and its functioning at any time. However, this system relies

completely on providing a sufficient number of reserves to maintain an acceptable level of

liquidity and reflect the real market price.

The role of providing reserves is assigned to liquidity providers who place their assets in

exchange for a share of the fees collected during the trading. For this reason, the provision of

attractive and economically reasonable conditions for liquidity providers is fundamental for the

viability and functionality of an AMM. While examining the attractiveness of the liquidity

provision strategy, it is rational to compare it with the "zero strategy" – storing assets on the

account without performing any actions, it is also referred to as a “hold strategy”. The

dependence of the liquidity provider's profit compared to the “hold strategy” when the price

moves under zero fee, is depicted in Figure 1.



Fig. 1

Comparison of The Liquidity Provider's Profit Relative To The Hold Strategy

The phenomenon of a provider's negative profit when the price moves is called impermanent

loss, since the losses do not occur when the price returns to the initial level. The nature of

impermanent losses significantly depends on the type of constant function – when using an

invariant other than (1), the depicted loss curve may be more flat or steep. Due to the

impermanent loss, the volatile price of an asset is a risk factor for liquidity providers, which

should be compensated by a high level of potential profit from fees.

The key innovations implemented for the first time in Uniswap V3 are aimed at solving the

problems described above when providing liquidity. When using the technology of concentrated

liquidity, assets are placed at specified price intervals, called positions (Fig. 2). This liquidity is

used during trading and collects a fee only if the current price is within the range set by the

position, which increases the efficiency of using the liquidity provider's funds. Using positions

allows you to achieve an uneven distribution of liquidity and, as a result, different price

behaviour and temporary losses.



Fig. 2 Examples of Liquidity Placement Ranges

Therefore, the placement of assets within price ranges not only increases the efficiency of funds

but also makes the overall market function much more flexible due to the arbitrary distribution of

liquidity. Due to this, liquidity providers have the ability to independently adjust the conditions

that minimize the impermanent loss. Another important factor is the presence of several pools

with different fees for each pair of assets. Via self-regulation, based on supply and demand, the

ability to choose the applied pool theoretically leads to the establishment of optimal

compromised conditions for all participants in the trading process.

However, the effectiveness of the overall liquidity is significantly reduced when several pools are

used on a certain pair, all at once. For instance, only 72% of providers choose a pool with a 0.3%

fee on the ETH/USDC pair, as can be seen in Figures 3.1 - 3.4. While the remaining 28%

virtually exist separately. The less liquidity is provided for a specific period, the less profitable

the exchange is due to a strong price change during the exchange. Сonsequently, such

distribution of assets leads to the fact that in a pool with 0.3%, exchanges move the price more

strongly than in a situation where all the liquidity is provided in one pool. “One pool” approach

is used in Algebra.

Figure 3.1 1INCH\ETH Pool Figure 3.2 ETH\USDC Pool



Figure 3.3 BAT\ETH Pool Figure 3.4 WBTC\ETH Pool



Optimal Conditions

All participants interacting with a DEX can be divided into three categories:

1. Regular Traders

2. Arbitrageurs

3. Liquidity Providers

Each group of participants has its own goals and strives to reach maximum profit with minimal

risks. The interests of groups can either coincide or contradict. On the one hand, liquidity

providers are interested in maximizing the profit from their investments, which is positively

influenced by high volume, high fees and low volatility. On the other hand, high fees contradict

the interests of users who carry out trades.

Fig. 4 User Groups and Their Interests



The effective functionality of a DEX requires a balanced and compromised solution that meets

the interests of all parties. Since the entire system can be considered closed – money does not

emerge from anywhere – an increase in the profit of one of the participants, usually, has the

opposite effect on others.

As already mentioned before, the fee size is one of the tools for redistributing profits and,

consequently, regulating the balance of interests. The presence of three pool options for each pair

in Uniswap V3 is precisely aimed at maintaining a balance of interests – the options are initially

designed to optimally match three different asset classes, such as stable pairs, normal and exotic

(Fig. 5).

Fig. 5 Uniswap V3 Pools

However, as already mentioned, this approach has a number of disadvantages: the dispersion of

liquidity, the complication of interaction with DEX, etc. In addition, the nature of the assets’

behavior rarely remains the same for a long period of time. This fact can be demonstrated by the

history of ETH prices to USDC (Fig. 6). During periods of high demand, volatility increases

significantly, the price begins to change significantly and drastically – at this time, the losses of

liquidity providers increase, which should force them to move assets to a pool with higher fees.

On the other hand, there are also time intervals with a more stable price.



Fig. 6 History of ETH/USDC Price

However, the mechanism of the fees’ correction, with the help of several pools, turns out to be

very inertial in such situations – it is unclear what the further behavior of the asset will be, and

also which pool will provide the greatest liquidity and trading volumes. This is the reason for the

initially selected "type" of the asset and the pool to be mainly preserved, which leads to inferior

conditions and lost profits for participants.

To solve this problem, Algebra offers a dynamic fee mechanism that will enable the

concentration of liquidity in one pool and guarantee the balance between participants, increasing

the income of each of the parties.



​Dynamic Fee Mechanism

To find the optimal commission amount, depending on the nature of the asset's behavior, the

following indicators are monitored:

1. Volatility

2. Liquidity

3. Trading Volume

High liquidity is supported by beneficial conditions for providers, which consist of high trading

volume with low volatility. In this case, the following situations are possible for providers:

High volume Low volume

High volatility Average income Negative income

Low volatility High income Average income

Table 1 Dependence of Profitability For LP On Market Behavior

From this, the following conclusions can be drawn:

​ When the volatility is high, it is necessary to increase the fee to compensate potential

losses of liquidity providers;

​ When the volume is low and there is sufficient liquidity, fees should be reduced in order

to attract more volume.

This is why Algebra offers a complex formula for determining the current fees in the pool, taking

into account changes in the parameters of volatility, trading volume and current liquidity.



​Volatility

First of all, based on the time-weighted moving average (2), the current volatility is calculated in

the form of a variance (3).

In this case:

- the time points corresponding to the available price observations,τ

- the value of the price at the moment,𝑃(τ) τ

- the time during which this price was maintained,∆𝑡(τ)

- time period (in seconds). Volatility, average values of the volume and the liquidity for every𝑇
time point are calculated during the period.

TWMA 𝑃(𝑡) = 1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑃(τ) · ∆𝑡(τ)

volatility δ(𝑡) = 1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑃(τ) − 𝑃(τ)( )2

It should be noted that these statistical parameters are calculated for the logarithmic prices

(ticks), which removes the dependence on the absolute value of the price – a price change from

1000 to 1100 will not cause greater volatility than a change from 100 to 110. So actual used

formulas are different:

𝑡𝑖𝑐𝑘(𝑃) = 𝑙𝑜𝑔
1.0001

𝑃 



TWMA 𝑡𝑖𝑐𝑘(𝑡) = 1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑡𝑖𝑐𝑘(𝑃(τ)) · ∆𝑡(τ) =  

=  1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑙𝑜𝑔

1.0001
𝑃(τ)

 ∆𝑡(τ)
=

=  𝑙𝑜𝑔
1.0001

 
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∏ 𝑃(τ)

 ∆𝑡(τ)
  =

= 𝑙𝑜𝑔
1.0001

𝑃(𝑡) 

(2)

volatility δ(𝑡) = 1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑡𝑖𝑐𝑘(𝑃(τ)) − 𝑡𝑖𝑐𝑘(𝑡)( )

2
 =  

=  1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑡𝑖𝑐𝑘(𝑃(τ)) − 𝑡𝑖𝑐𝑘(τ)( )

2
 =

=  1
𝑇

τ ∈ [𝑡−𝑇, 𝑡]
∑ 𝑙𝑜𝑔

1.0001
 𝑃(τ)

𝑃(τ)( )2

(3)

The received volatility value is then used to determine the base fee level. To do this, a formula

based on the sum of two sigmoids is used. The standard sigmoid is given by the formula (4).

𝑦 = 1

1+𝑒−𝑥 (4)



Fig. 7 Graph of The Standard Sigmoid Function

A small modification allows us to create the following formula, which provides considerably

more flexibility:

𝑦 = α

1+𝑒γ β−𝑥( ) (5)

Technically, contracts represent gamma as a divisor, not a multiplier. So the exponent part looks
like:

𝑒 β−𝑥( )/ γ

The following coefficients have been added to the formula:

​ α - allows scaling the maximum value of the sigmoid
​ β - is responsible for the linear shift along the x-axis
​ γ - regulates the "steepness" of the sigmoid

In this case, you can derive the following formula:

𝑦 =
α

1

1+𝑒
γ

1
β

1
−𝑥( ) +

α
2

1+𝑒
γ

2
β

2
−𝑥( ) (6)



Fig. 8 Step Function of Sigmoids

By changing the coefficients, it is possible to provide a wide range of different options:



The derived formula is convenient for calculation and has sufficient flexibility, which allows you

to set the dependence of the fees’ base level on volatility:

𝐹𝑒𝑒
𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

𝑡( ) =
α

1

1+𝑒
γ

1
β

1
−δ(𝑡)( ) +

α
2

1+𝑒
γ

2
β

2
−δ(𝑡)( )

(7)

Formula (7) can be used to calculate the commission, but it does not take into account the other

important factors – volume and liquidity.

Volatility resampling

Additionally, it should be noted that the update of information about the price does not occur

every second. For this reason, it is necessary to resample records at a frequency of 1 record per

second.

As we add each new entry, we know the following:

- time elapsed since previous recording𝑇

- current tick value𝑡𝑖𝑐𝑘(𝑇)

- tick value at the moment of previous record𝑡𝑖𝑐𝑘(0)

- current average tick value𝑡𝑖𝑐𝑘(𝑇)

- average tick value at the moment of previous record𝑡𝑖𝑐𝑘(0)



In this case, the change in tick and average tick over the past time can be linearly interpolated by

two functions:

𝑡𝑖𝑐𝑘(𝑡) =  𝑘 𝑡 +  𝑏

𝑡𝑖𝑐𝑘(𝑡) =  𝑝 𝑡 +  𝑞

Where k, b, p, q are corresponding constants:

𝑘 = 1
𝑇  (𝑡𝑖𝑐𝑘(𝑇) − 𝑡𝑖𝑐𝑘(0))  

𝑝 = 1
𝑇  (𝑡𝑖𝑐𝑘(𝑇) − 𝑡𝑖𝑐𝑘(0))  

𝑏 = 𝑡𝑖𝑐𝑘(0) 

𝑞 = 𝑡𝑖𝑐𝑘(0) 

So formula (3) can be approximated over a time range using:

=𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑂𝑛𝑅𝑎𝑛𝑔𝑒(𝑡
0
,  𝑡

1
) = 1

𝑡
1
 − 𝑡

0
 

𝑡 = 𝑡
0

𝑡
1

∑ (𝑡𝑖𝑐𝑘(𝑡) −  𝑡𝑖𝑐𝑘(𝑡))2 

=  1
𝑡

1
 − 𝑡

0
 

𝑡 = 𝑡
0

𝑡
1

∑ ((𝑘 −  𝑝) 𝑡 +  (𝑏 −  𝑞))2 =  

= 1
𝑡

1
 − 𝑡

0
 

𝑡 = 𝑡
0

𝑡
1

∑ ((𝑘 −  𝑝)2 𝑡2 + 2 (𝑏 −  𝑞)(𝑘 −  𝑝) 𝑡 + (𝑏 −  𝑞)2) =

1
𝑡

1
 − 𝑡

0
 ((𝑘 −  𝑝)2 

𝑡 = 𝑡
0

𝑡
1

∑ 𝑡2 + 2 (𝑏 −  𝑞)(𝑘 −  𝑝)
𝑡 = 𝑡

0

𝑡
1

∑ 𝑡 + (𝑡
1

− 𝑡
0
)(𝑏 −  𝑞)2

This approximation is used in contracts to correctly increase the volatility accumulator.



​Volume

It is known that the absolute values of the trading volume for different assets can differ

significantly – $1,000,000 is not the same as 1,000,000 ETH. For this reason, it is necessary to

build a general indicator that will uniformly characterize the intensity of trading for different

assets.

In the case of the market function (1), the amount of liquidity is calculated using the formula:

𝐿 = 𝑋 · 𝑌 (8)

Knowing the trading volume of each of the assets in the pool, you can get a value that

characterizes the amount of liquidity used:

𝐿
~

= 𝑉
1

· 𝑉
2

(9)

where V1 and V2, respectively, are the trading volumes of assets 1 and 2. In this case, the

following ratio characterizes the level of intensity of use of the available liquidity in the pool:

𝐼
𝑡

=
𝐿
~

𝑡

𝐿
𝑡

(10)

By using the formula (5) and determining the necessary threshold values, it is possible to create a

"regulator" that reflects the "sufficiency" of the trading volume at the moment:

α
𝑅

1+𝑒
γ

𝑅
β

𝑅
−𝐼

𝑡( ) (11)



It is reasonable to choose the coefficient equal to 1, to let the trading volume play the role of aα
𝑅

threshold regulator that reduces the commission at low exchange activity.

The constant is used as the minimum possible fee value.𝐹𝑒𝑒
𝑏𝑎𝑠𝑒 

Then the final fee function turns out to be as follows:

𝐹𝑒𝑒 𝑡( ) = 𝐹𝑒𝑒
𝑏𝑎𝑠𝑒 

 +  𝐹𝑒𝑒
𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

𝑡( ) · 1

1+𝑒
γ

𝑅
β

𝑅
−𝐼

𝑡( ) (12)

More detailed:

𝐹𝑒𝑒 𝑡( ) = 𝐹𝑒𝑒
𝑏𝑎𝑠𝑒 

 +  (13)

+
α

1

1+𝑒
γ

1
β

1
− δ(𝑡)( ) +

α
2

1+𝑒
γ

2
β

2
− δ(𝑡)( )( ) · 1

1+𝑒
γ

𝑅
β

𝑅
−

𝑉1(𝑡)·𝑉2(𝑡)

𝐿𝑡
⎛

⎝

⎞

⎠

​Dynamic Fee Usage

Based on the historical data of trades on Uniswap V3 pools, the adaptive fee values were

calculated at different time points. The reaction of the fee function adequately corresponds to

what is happening on the market.

On each chart, the white color corresponds to the zones with the lowest fees, and the dark red

color corresponds to the highest.

​ETH/USDC

ETH/USDC price chart in a pool with a fee of 0.05%:



The graph above demonstrates that the control function successfully detects time intervals with

high volatility and high demand for the asset, which indicates the need to increase the fee in dark

red zones. Still, there are periods of relative calm with low trading volume and weak volatility,

during which time it is reasonable to reduce the fee.

The more detailed period from 8/17/2021 to 9/13/2021:

The period from 7/25/2021 to 8/1/2021:



The period from 7/2/2021 to 7/6/2021:

In the more detailed charts, you can observe the fee's reaction to changes in market conditions in

more detail. Thus, it is recommended to increase the fees drastically during moments where it

collapses and rises, like in early September 2021, which simultaneously stimulates trading with a

reduced commission during periods of calm.

​SHIBA/ETH

A similar graph of the same fee function for the SHIBA/ETH pool:

This chart reflects a pair with a more volatile and hyped asset, which forces the function to set a
high fee most of the time.



​DAI/USDC

A similar graph of the same fee function for the DAI/USDC pool:

A pool with a stablecoin has much lower volatility. This fact, combined with a stable trading
volume, encourages the function to keep the fee at a minimum level.

Conclusion

According to the results of these tests, it can be concluded that the received fee function responds

adequately and on time to changes in the nature of price behavior. A pair of stablecoins

consistently has the lowest fees, and the fees of more volatile assets depend on the market

situation. This is why such management of the commission will allow for balancing the interests

of various traders, providing the most effective and favorable conditions.



​
​2. Built-in Farming

Overview

After the user has provided liquidity for a certain range, he receives an ERC-721 token tied to
this range. This token can be used, not only as a proof of the provided liquidity, but also as a tool
for yield-farming.

To receive rewards, a liquidity provider can participate in one of the farming Campaigns. A
Campaign is a time-limited, pool-based incentive program that contains a certain amount of
reward tokens.

To participate in the Campaign, one needs to send an ERC-721 token to the farming contract,
which will be stored on it until the end of the Campaign. After the end of the Campaign, all
reward tokens will be distributed among the liquidity providers who participated in the
Campaign, and all ERC-721 tokens will be returned back.

The amount of the reward that a particular liquidity provider will receive depends on the time
while her liquidity was in the price range in which the trades took place.

For proper reward calculation for each Campaign participant we invented an entity called a
Virtual pool. A Virtual pool is a simplified copy of a real pool; it is used to track the time while
the liquidity of different providers is active.
The calculation of the time when liquidity was active for a certain period is performed as
follows:

𝑠𝑒𝑐𝑜𝑛𝑑𝑠𝑃𝑒𝑟𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 = 𝑟𝑎𝑛𝑔𝑒𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝐼𝑛𝑠𝑖𝑑𝑒
𝑟𝑎𝑛𝑔𝑒𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 (15)

where rangeSecondsInside is the time while the price was at the range of provided liquidity, and
rangeLiquidity is all of the liquidity on that range.



The time while liquidity was active on a given range is calculated as:

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝐼𝑛𝑠𝑖𝑑𝑒 = 𝑠𝑒𝑐𝑜𝑛𝑑𝑠𝑃𝑒𝑟𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 * 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 (16)

where positionLiquidity is the value that represents position’s liquidity.

Now, knowing the time while the liquidity was active, we can calculate the reward for the given
Campaign participant:

𝑟𝑒𝑤𝑎𝑟𝑑 =  𝑡𝑜𝑡𝑎𝑙𝑅𝑒𝑤𝑎𝑟𝑑 * 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑐𝑜𝑛𝑑𝑠𝐼𝑛𝑠𝑖𝑑𝑒
𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (17)

where totalReward is the total reward amount, and campaignDuration is the duration of the
Campaign.

Every time there is a swap in the real pool, or a new participant takes part in the event, the
Virtual pool recalculates the rewards for each participant of the Campaign.

Example
Total reward amount of the Campaign is 180 tokens. The Campaign lasts 60 minutes.



4 liquidity providers participate in the Campaign. Their positions have the following parameters:

Provider #1: Liquidity: 10 points, was active for 30 minutes
Provider #2: Liquidity: 20 points, was active for 10 minutes
Provider #3: Liquidity: 30 points, was active for 30 minutes
Provider #4: Liquidity: 100 points, was inactive



Let's depict the time while liquidity was active on ranges A, B, C, D:



It should be noted that the liquidity of Provider #4, located on range D, was inactive.

At the end of the Campaign, the rewards were distributed among the providers as follows:

Provider #1 received of total amount (70 tokens)( 20* 10
10 + 10*10

30 )/60 = 7
18

Provider #2 received of total amount (20 tokens)( 10*20
30 )/60 = 2

18

Provider #3 received of total amount (90 tokens)( 30*30
30 )/60 = 9

18

Despite the fact that 4 liquidity providers participated in the Campaign, the rewards were
distributed only among those providers whose liquidity was active for at least some time.
Provider #4 did not receive any awards.



Conclusion

Therefore, Algebra implements the following features for providing the best exchange
experience to all the participants:

— An innovative adaptive fee formula guarantees optimal values ​​for both liquidity providers and
traders.

— Built-in farming allows projects to increase their attractiveness for holders and investors, in
the meanwhile giving liquidity providers an opportunity to make profit from their deposited
funds.

These features, as well as provide support for deflationary tokens, will place Algebra in a leading
position in DeFi space.


